Derrida’s Generalised Random Energy models 1: models with finitely many hierarchies

نویسندگان

  • Anton Bovier
  • Irina Kurkova
چکیده

This is the first of a series of three papers in which we present a full rigorous analysis of a class of spin glass models introduces by Derrida under the name of Generalised Random Energy Models (GREM). They are based on Gaussian random processes on the hypercube {−1,1}N with a hierarchical correlation structure. In this first paper we analyse the models with a finite number of hierarchies. In particular, we identify the thermodynamic limit of the Gibbs measures with Ruelle’s probability cascades.  2004 Elsevier SAS. All rights reserved. Résumé Cet article est le premier d’une série de trois articles où nous présentons une analyse entièrement rigoureuse de la classe des modèles de verres de spin introduite par Derrida sous le nom de Generalised Random Energy Models (GREM). Ces modèles sont basés sur des processus gaussiens sur l’hypercube {−1,1}N ayant une structure de corrélations hierarchique. Dans ce papier nous analysons les modèles ayant un nombre fini de hierarchies. En particulier, nous identifions la mesure de Gibbs dans la limite thermodynamique avec les cascades de probabilités de Ruelle.  2004 Elsevier SAS. All rights reserved. MSC: 82B44; 60G70; 60K35

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Derrida’s Generalized Random Energy models 2: models with continuous hierarchies

This is the second of a series of three papers in which we present a rigorous analysis of Derrida’s Generalized Random Energy Models (GREM). Here we study the general case of models with a “continuum of hierarchies”. We prove the convergence of the free energy and give explicit formulas for the free energy and the two-replica distribution function in thermodynamical limit. Then we introduce the...

متن کامل

Studies on Some Inventory Model for Deteriorating Items with Weibull Replinishment and Generalised Pareto Decay Having Demands as Function of on Hand Inventory

Inventory models play an important role in determining the optimal ordering and pricing policies. Much work has been reported in literature regarding inventory models with finite or infinite replenishment. But in many practical situations the replenishment is governed by random factors like procurement, transportation, environmental condition, availability of raw material etc., Hence, it is nee...

متن کامل

Derrida’s Generalized Random Energy Models 4: Continuous State Branching and Coalescents

In this paper we conclude our analysis of Derrida’s Generalized Random Energy Models (GREM) by identifying the thermodynamic limit with a one-parameter family of probability measures related to a continuous state branching process introduced by Neveu. Using a construction introduced by Bertoin and Le Gall in terms of a coherent family of subordinators related to Neveu’s branching process, we sh...

متن کامل

The local REM and beyond

Recently, Bauke and Mertens conjectured that the local statistics of energies in random spin systems with discrete spin space should in most circumstances be the same as in the random energy model. Here we give necessary conditions for this hypothesis to be true, which we show to hold in wide classes of examples: short range spin glasses and mean field spin glasses of the SK type. We also show ...

متن کامل

Random Partitioning Problems Involving Poisson Point Processes On The Interval

Suppose some random resource (energy, mass or space) χ ≥ 0 is to be shared at random between (possibly infinitely many) species (atoms or fragments). Assume Eχ = θ < ∞ and suppose the amount of the individual share is necessarily bounded from above by 1. This random partitioning model can naturally be identified with the study of infinitely divisible random variables with Lévy measure concentra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004